The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects of excitotoxicity in the hypothalamus in transgenic mouse models of Huntington disease

Henningsen JB,  Soylu-Kucharz R, Björkqvist M and Petersén Å.

Heliyon. 2021 Aug 14;7(8):e07808. doi: 10.1016/j.heliyon.2021.e07808. eCollection 2021 Aug.

Abstract

Huntington disease (HD) is a fatal neurodegenerative movement disorder caused by an expanded CAG repeat in the huntingtin gene (HTT). The mutant huntingtin protein is ubiquitously expressed, but only certain brain regions are affected. The hypothalamus has emerged as an important area of pathology with selective loss of neurons expressing the neuropeptides orexin (hypocretin), oxytocin and vasopressin in human postmortem HD tissue.

Hypothalamic changes in HD may have implications for early disease manifestations affecting the regulation of sleep, emotions and metabolism. The underlying mechanisms of selective vulnerability of certain neurons in HD are not fully understood, but excitotoxicity has been proposed to play a role. Further understanding of mechanisms rendering neurons sensitive to mutant huntingtin may reveal novel targets for therapeutic interventions.

In the present study, we wanted to examine whether transgenic HD mice display altered sensitivity to excitotoxicity in the hypothalamus. We first assessed effects of hypothalamic injections of the excitotoxin quinolinic acid (QA) into wild-type (WT) mice. We show that neuronal populations expressing melanin-concentrating hormone (MCH) and cocaine and amphetamine-regulated transcript (CART) display a dose-dependent sensitivity to QA. In contrast, neuronal populations expressing orexin, oxytocin, vasopressin as well as tyrosine hydroxylase in the A13 area are resistant to QA-induced toxicity. We demonstrate that the R6/2 transgenic mouse model expressing a short fragment of mutant HTT displays hypothalamic neuropathology with discrete loss of the neuronal populations expressing orexin, MCH, CART, and orexin at 12 weeks of age. The BACHD mouse model expressing full-length mutant HTT does not display any hypothalamic neuropathology at 2 months of age. There was no effect of hypothalamic injections of QA on the neuronal populations expressing orexin, MCH, CART or oxytocin in neither HD mouse model. In conclusion, we find no support for a role of excitotoxicity in the loss of hypothalamic neuronal populations in HD.